

Possibility of a direction-indicating low frequency MEMS microphone



Allan D. Pierce

B.U.G.S.

**Boston University** 

with acknowledgments to

Debora Compton, Tom Bifano, David Mountain, Allyn Hubbard, Harley Johnson, Robin Cleveland, and others













## Issue:

Can we build a compact MEMS device that senses acoustic signals in the lower kilohertz range and which nevertheless gives us a good indication of the direction from which the sound is coming?













$$\Theta = 0$$

$$p_f \approx p_b, but p_f \neq p_b$$



















It is possible to excite the system

so that the relative amplitudes and phases of the two modes

are such that

the back face of the sensor

doesn't move at all

## **Design strategy:**

Choose parameters so that this excitation corresponds to Θ=0 for the frequency range of interest











## Comments on possible realizations and extensions

 Frequency range must be close to resonance frequency of non-squeezing mode

For fixed chip orientation, azimuth direction determination requires array with some minimum lateral distance requirement

- Can design systems with rotatable chips; rotate until Θ=0 is indicated
- Several sensors on same chip possible, each corresponding to a different choice of Θ, different frequency range





